Factory automation is the incorporation of automation from end-to-end manufacturing processes. In manufacturing environments, automation often leverages technologies such as pneumatic systems, hydraulic systems, and robotic arms to create a more complex system.
Fixed Automation System.
Fixed automation, also known as “hard automation,” refers to an automated production facility in which the sequence of processing operations is fixed by the equipment configuration. In effect, the programmed commands are contained in the machines in the form of cams, gears, wiring, and other hardware that is not easily changed over from one product style to another. This form of automation is characterized by high initial investment and high production rates. It is therefore suitable for products that are made in large volumes. Examples of fixed automation include machining transfer lines found in the automotive industry, automatic assembly machines, and certain chemical processes.
Programmable Automation System.
Programmable automation is a form of automation for producing products in batches. The products are made in batch quantities ranging from several dozen to several thousand units at a time. For each new batch, the production equipment must be reprogrammed and changed over to accommodate the new product style. This reprogramming and changeover take time to accomplish, and there is a period of nonproductive time followed by a production run for each new batch. Production rates in programmable automation are generally lower than in fixed automation, because the equipment is designed to facilitate product changeover rather than for product specialization. A numerical-control machine tool is a good example of programmable automation. The program is coded in computer memory for each different product style, and the machine tool is controlled by the computer program. Industrial robots are another example.
Integrated Automation System.
The technology associated with this trend is called CAD/CAM, for computer-aided design and computer-aided manufacturing. Today it is widely recognized that the scope of computer applications must extend beyond design and production to include the business functions of the firm. The name given to this more comprehensive use of computers is computer-integrated manufacturing (CIM). CAD/CAM is based on the capability of a computer system to process, store, and display large amounts of data representing part and product specifications. For mechanical products, the data represent graphic models of the components; for electrical products, they represent circuit information; and so forth. CAD/CAM technology has been applied in many industries, including machined components, electronics products, and equipment design and fabrication for chemical processing. CAD/CAM involves not only the automation of the manufacturing operations but also the automation of elements in the entire design-and-manufacturing procedure.